

(Pages: 2)

Reg. No. :

Sixth Semester B.Tech. Degree Examination, May 2016 (2008 Scheme)

08.605 : ANTENNA AND WAVE PROPAGATION (T)

Time: 3 Hours

PART-A

Answer all questions.

- 1. Compute the directivity of a current element Idl.
- 2. An antenna has directivity of 20 and a radiation efficiency of 90%. Compute the gain of the antenna.
- 3. What is retarded potential?
- 4. A certain antenna is used to radiate a 0.2 GHz signal to a satellite in space. The radiation resistance of the antenna is 31.6 Ohms. What is the type of antenna?
- 5. Draw Log periodic antenna array for UHF and VHF ranges. Explain their applications.
- State and explain reciprocity theorem.
- 7. Sketch the resultant pattern of an array of 2 short vertical dipoles with $d = \lambda/4$, $\alpha = 0$ using pattern multiplication principle.
- 8. Derive an expression for LOS propagation distance.
- 9. Enumerate the characteristic of ionized region.
- 10. What are the advantages and applications of multihop propagation? (10×4=40 Marks)

PART-B

Answer 2 questions from each Module. Each question carries 10 marks.

Module - I

11. Derive the far electric and magnetic field components of $\lambda/2$ antenna and hence obtain its radiation resistance.

P.T.O.

A - 2863

- 12. A mobile phone base station transmitter delivers 20 W into a 10dB gain antenna at 900 MHz. Compute the power in "W" available from a receiving antenna 30 km away with a gain of 5 dB.
- 13. Explain methods for the measurement of impedance and gain of an antenna.

Module - II

- 14. Design a horn antenna (find the dimensions) to give a HPBW of 30 deg. in both the E and H planes at a frequency of 9 GHz. The horn is to be mounted on an X band waveguide. Assume the flare angle to be 15 deg. Calculate the gain of the horn.
- 15. What are Dolph Chebyshev arrays? Design an array with n = 4 and $d = \lambda/2$.
- Explain the significance of antenna arrays. Derive an expression for antenna array factor.

Module - III

- 17. Explain the characteristics of lonosphere. Derive the characteristic equations of ionosphere.
- 18. a) What is troposcatter propagation?
 - b) Derive the expression for field strength of space wave.
- 19. At a 300 Km height in ionosphere, the electron density at night is about $3 \times 10^{12} \, \text{m}^{-3}$ and the signal MUF is f=2f_{cr} for a transmission distance of 600 Km. Compute f_{cv} , ϵ_r , η , β , V_p , V_g and θ_t .